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Abstract

Scientific computations for the quantification, estimation and prediction of uncertainties for ocean dynamics are devel-
oped and exemplified. Primary characteristics of ocean data, models and uncertainties are reviewed and quantitative data
assimilation concepts defined. Challenges involved in realistic data-driven simulations of uncertainties for four-dimen-
sional interdisciplinary ocean processes are emphasized. Equations governing uncertainties in the Bayesian probabilistic
sense are summarized. Stochastic forcing formulations are introduced and a new stochastic-deterministic ocean model
is presented. The computational methodology and numerical system, Error Subspace Statistical Estimation, that is used
for the efficient estimation and prediction of oceanic uncertainties based on these equations is then outlined. Capabilities
of the ESSE system are illustrated in three data-assimilative applications: estimation of uncertainties for physical–biogeo-
chemical fields, transfers of ocean physics uncertainties to acoustics, and real-time stochastic ensemble predictions with
assimilation of a wide range of data types. Relationships with other modern uncertainty quantification schemes and prom-
ising research directions are discussed.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The ocean physics involves a multitude of phenomena occurring on multiple scales, from molecular and
turbulent processes to decadal variations and climate dynamics. Life takes place in the ocean, from bacteria
and plankton cells to fish and mammals. Marine ecosystems also involve multiple phenomena, for example
consider plankton blooms, biomass cycles or regime shifts in fish populations. Oceanic processes cover a wide
range of space scales, from about 1 mm to 10,000 km, and of time scales, from about 1 s to 100 years and
more. Features and properties in the ocean interact over these scales and significant interactions occur pre-
dominantly over certain ranges of scales, which are usually referred to as scale windows. For example, the
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internal weather of the sea, the so-called oceanic mesoscale, mainly consists of phenomena occurring over a
day to months and over kilometers to hundreds of kilometers. This is one of the most energetic scale windows
in the ocean and the present methodological and computational study on the quantification and large-scale
simulation of uncertainties focuses on this window of oceanic processes.

Oceanic physical features, such as currents, fronts, eddies, tides, internal waves, solitons and turbulence
influence the distribution of organisms, the rates of biological activity and the performance of underwater
acoustic remote sensing. Many physical, biological and chemical features and processes interact. For example,
consider oceanic primary productivity, the oceanic food web or the biological pump and its role in changing
the global carbon cycle. Several important oceanic processes are interdisciplinary, multiscale and nonlinear
[69], and, in coastal oceans, strong episodic and patchy events contribute to these dynamics [62]. Often, this
variability can be neither sampled nor modeled on a sustained and substantial basis, at scales and accuracies
sufficient for a definite representation. Marine data are required for realistic studies but are limited in coverage
in time and space. Comprehensive ocean models are approximate because of practical simplifications, inexact
representations or parameterizations, and numerical implementations. This results in uncertainties or differ-
ences between the actual values (unknown) and the measured or modeled values of physical, biological and
acoustical fields and properties.

A comprehensive prediction should include the reliability of estimated quantities. This allows an adequate
use of these estimates in a scientific or operational application. In a prediction with a model integrating either
in time and/or in space, errors in the initial data (initial conditions), boundary conditions and models them-
selves impact accuracy. Predicted uncertainties then contain the integrated effects of the initial error and of the
errors introduced continuously during model integration.

Variability and uncertainty are inherently related, and this relation affects the attributions of errors, e.g.
[51]. For any estimate, the portion of variability that is expected to contain errors contributes to uncertainty.
For example, variability that is totally unresolved is pure uncertainty. Mathematically, uncertainty can be
defined here by the probability density function (PDF) of the error in the estimate. Uncertainties are thus
assumed measurable. Error refers to the difference between the truth and the estimate. Uncertainties are often
represented by low order characteristics or integrals of the error PDF, e.g., the moments or confidence inter-
vals. For example, for the classic standard deviation, the representation is the square root of the mean squared
error. Since ocean fields are four-dimensional, straightforward uncertainty representations are here also fields,
with structures in time and space.

Realistic simulations of four-dimensional ocean fields are carried out over broad numerical domains, e.g.
O(10–1000) km for O(10–1000) days. The number of grid points and thus of discretized state variables are
very large, usually of O(105–107). On the other hand, ocean data are limited in temporal and spatial
coverage. Commonly, the number of data points for an at-sea sampling campaign is of O(104–105). For
substantial scientific advances and to reduce uncertainties, the sources of information, the various data
and dynamical models, are combined by data assimilation [68,71]. This combination is challenging and
expensive to carry out, but optimal in the sense that each type of information is weighted in accord with
its uncertainty. In principle, this process provides better estimates of parameters and properties than can
be obtained by using only the observations or models alone. In coupled data assimilation, multivariate cor-
relations are used. For example, physical data improve biological fields and biological data improve physical
fields. Of course, should optimal field and error estimates fail to be accurate, a priori assumptions about
uncertainties are revised, and models and data sets improved. Once oceanic properties have been estimated,
specific dynamical events can be studied and corresponding simpler models can be derived, leading to better
understanding.

In what follows, we review primary characteristics of ocean data, models and uncertainties, and define
concepts linked to data assimilation (Section 2). Fundamental equations including novel oceanic stochastic
forcing formulations and a computational methodology and numerical system for the estimation and predic-
tion of realistic ocean uncertainties are then presented (Section 3). The system, error subspace statistical esti-
mation, has been developed and successfully utilized for real-time data assimilation and uncertainty
forecasting. It is illustrated based on three new interdisciplinary data-assimilative uncertainty applications:
physical–biogeochemical estimations in Massachusetts Bay, physics-to-acoustics transfers in the Middle
Atlantic Bight and sustained physical predictions in the Monterey Bay region (Section 4). Relationships with
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other modern uncertainty quantification schemes and promising directions are then discussed (Section 5).
After the conclusions (Section 6), details on the new stochastic-deterministic coupled models are given
(Appendix A).

2. Interdisciplinary data, models and data assimilation

The platforms that can be utilized today to measure oceanic properties in situ consist mostly of ships, air-
craft, moored/fixed buoys, drifters and underwater vehicles including gliders [14]. Remotely sensed observa-
tions are also available, for example from satellites or coastal radar, which provide repeated larger-scale
snapshots of surface properties of oceanic regions. Platforms at sea can be equipped with several sensors mea-
suring physical properties of the ocean, such as currents, temperature, salinity or pressure. The resulting data
are point-wise observations along the path of the sensor, for example successive temperature vertical profiles.
Biological and chemical properties are also often measured in situ and common data types include available
light radiation, fluorescence, dissolved nitrogen concentrations, or plankton species and concentrations.
Underwater sound propagation is influenced by the ocean’s physics and biology, in a large part through vari-
ations in the sound speed and scattering processes. Integrated oceanic effects between a source and receiver
are thus contained in acoustic observations. For example, acoustic propagation data can be used to estimate
current velocities and water densities by direct inversion. In addition, the backscatter from acoustic propaga-
tion contains useful information on the abundance and biology of organisms that are responsible for the
backscatter. Biological inference from acoustic observation is emerging [29,60]. Even though oceanic mea-
surements are the source of ground truth for scientific studies, sensors require calibrations. Raw measure-
ments are processed and often de-aliased, filtered or averaged. Each ocean datum is thus associated with
some uncertainties.

Most physical ocean models are derived from the Navier–Stokes equations in a rotating frame of reference.
Practical assumptions are used to limit the range of modeled scales. A Boussinesq fluid, or small variations of
density about a state of reference, is usually assumed. The turbulent flow is commonly reduced to a scale win-
dow of interest (here mostly the mesoscale) by averaging. Turbulent parameterizations/closures are then uti-
lized. Finally, the thinness approximation and assumption of hydrostatic balance can be made (vertical scales
much smaller than horizontal scales). The result of these simplifications is the so-called primitive equations
(PE) of physical ocean dynamics [66], which are employed here (Appendix A.1). Acoustic models are also
derived from Navier–Stokes and are usually based on a wave equation for the sound pressure [43]. Even
though much progress has been made in marine ecosystem modeling, e.g. [45,34], equations as fundamental
as Navier–Stokes are not yet available. For lower trophic levels, most models are based on advection–
reaction–diffusion equations: they differ in their structure, the number of state variables employed and the
parameterizations utilized. All of the above simplifications, approximate representations and parameteriza-
tions employed for four-dimensional ocean modeling lead to uncertainties. In addition, numerical algorithms
discretize the approximate models for numerical simulations. Most numerical ocean models are based on finite
differences, but some finite element models are also employed. Computations are subject to errors associated
with the algorithms used and the limitations of the computer. To represent all of these model uncertainties or
at least their dominant components, stochastic error models are starting to be employed, e.g., for representing
the statistical effects of sub-mesoscales and internal tidal phenomena in mesoscale resolution models (see
Section 3.1.1 and Appendix A.2).

Today, real-time ocean predictions for scientific and operational applications require a systemic approach
that synthesizes theory, data and numerical computations [69]. The concept of ocean observing and prediction
systems for field and parameter estimations has recently been defined with three major components: (i) an
observational network: a suite of platforms and sensors for specific tasks, including data management and
analysis schemes; (ii) a suite of interdisciplinary dynamical models; and importantly, (iii) data assimilation
schemes and scientific analyses. Ideal systems are modular, based on distributed information systems provid-
ing sharable, scalable, flexible and efficient workflows [65]. Such systems are starting to be utilized on global,
basin and regional scales [67], with varied levels of complexity and accuracy.

For melding measurements with dynamical models via data assimilation (DA), measurement models that
link the dynamical model variables and parameters to the observations are needed. These measurement
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models include uncertainties because the sensors, data collection procedures and relationships among data and
dynamical variables, are approximate. The data and measurement models, and the dynamical models, are
combined in accord with their prior uncertainty estimates using a DA criterion. This criterion determines
how each source of information is weighted. The results of the DA are melded estimates of the ocean state,
parameters and/or model structures themselves. These posterior estimates correspond to field estimation,
parameter estimation and model estimation, respectively. It is the multivariate relations among model vari-
ables or observations that form the basis for multivariate DA: i.e., the correction of a property from the mea-
surement of another. The generic DA problem is summarized as:
Dyn: models: d/i þ u � r/i dt �rðKir/iÞdt ¼ Bið/1; . . . ;/i; . . . ;/nÞdt þ dgi ð1aÞ
Param: eqns:: dP ‘ ¼ C‘ð/1; . . . ;/i; . . . ;/n; P ‘Þdt þ df‘ ð1bÞ
Meas: models: yj ¼Hjð/1; . . . ;/i; . . . ;/n; P ‘Þ þ �j ð1cÞ
DA criterion: min

/i ;P ‘
Jðdgi ; df‘ ; �j ; qg ; qf ; q�Þ ð1dÞ
To obtain Eq. (1a), the deterministic partial differential equations (PDEs), see Appendix A.1, for /i = u,
v, T, . . . ,Z, . . ., ps with i = (1, . . ., n) are modified and manipulated to PDEs with stochastic forcings dgi so
as to represent model uncertainties. The rationale chosen and governing equations for the stochastic forcings
are in Section 3. Model parameters (diffusivities, biological rates, etc.), P‘ = {Ki, Ri, . . .} with ‘ = (1, . . .,p), are
also represented by an equation (Eq. (1b)) with stochastic forcings df‘, where C‘ are functionals that describe
the deterministic evolution of the parameters with time and space. The resulting Eqs. (1a) and (1b) are here
written as Itô stochastic PDEs, e.g. [37,25]. The state variables /i are related to observations yj (temperature,
sea surface height, transmission loss, Coastal Ocean Dynamics Application Radar data, fluorescence, etc.,
with j = 1, . . .,m) via measurement operators Hj and with stochastic forcings �j (Eq. (1c)). The functionals
Bi, C‘ and Hj can depend on the values of parameters P‘: e.g., C‘ is in general a function of P‘ and parameters
can be directly measured in Hj. The terms df‘ in Eq. (1b) thus lead in general to multiplicative noise: e.g., df‘’s
that multiply functionals of /i’s in Eq. (1a). Most parameter estimation problems lead to nonlinear estima-
tions and involve multiplicative noise. The DA or melding criterion (Eq. (1d)) involves the minimization of
a functional J of the stochastic forcings (dgi, df‘, �j) and their a priori statistical properties here denoted by
(qg, qf, q�), subject to the constraints in Eqs. (1a)–(1c). This optimization leads to the posterior estimates of
/i and P‘: /̂i and P̂ ‘.

If models/data are used as strong constraints, the terms dgi, df‘ or d�j are null. If they are used as weak
constraints, the PDFs of the stochastic forcings are specified and used in Eq. (1d). Importantly, these stochas-
tic forcings do not need to have a zero mean, but Eqs. (1a)–(1c) can always be written so that they do, by
transferring the means to the deterministic terms, Bi, C‘ and Hj. Data-model misfits/residuals refer to the dif-
ferences between the data and the model estimated values of the data, yj �Hjð/̂1; . . . ; /̂i; . . . ; /̂nÞ.

A number of simple to complex methods have been developed and used for DA in engineering, meteorology
and oceanography [3,80,61,70,40]. An overview is presented in Section 3 of [68], with an appendix that pro-
vides equations for various methods. Most schemes are derived from estimation theory, control theory (for
variational or calculus of variations approaches) or optimization theory (for direct methods). Estimation the-
ory schemes solve a forward/filtering problem or a smoothing/inverse problem. Control theory schemes solve
a smoothing problem. Almost all schemes are linked to a minimization of an error norm or criterion (Eq.
(1d)). Many methods are based on least-squares norms.

The posterior uncertainties and data-model misfits, and their agreements or discrepancies, are useful to
evaluate the assimilation scheme. They also provide the inputs to two essential assimilation feedbacks. First,
the types and locations of the observations that are most needed can be determined and their characteristics
predicted by adaptive sampling. Second, the model properties that need the most improvements can be iden-
tified and their characteristics estimated by adaptive modeling [56]. Some DA schemes only require the spec-
ification of uncertainties for the inputs in Eqs. (1a)–(1c). They do not require an explicit estimation of
uncertainties for the outputs, the model field and parameter estimates, /̂i and P̂ ‘. Presently, the goal is to
estimate such uncertainties explicitly and the corresponding methodology is described and illustrated next.
Uncertainty estimates enhance the DA scheme and allow for adaptive sampling and adaptive modeling.



180 P.F.J. Lermusiaux / Journal of Computational Physics 217 (2006) 176–199
3. Uncertainty estimation methodology

DA can reduce uncertainties but there always remain some irreducible errors which need to be represented.
One usually first identifies the dominant processes that are not accounted for or not resolved and that are
expected to impact uncertainties. These are the inputs, the priors, in a Bayesian framework. Uncertainty pre-
dictions can then be carried out using evolution equations for the error PDFs (of the dynamics and param-
eters). When observations are made, these PDFs are updated by combining them with the new data values
and their PDFs, using Bayes’ rule. If everything is linear and Gaussian, Bayes’ rule reduces to the Kalman
filter. Important properties are the: (i) conditional mean which is the minimum error variance estimate; and
(ii) error covariances which are simple but essential components of the error statistics. For complex interdis-
ciplinary ocean systems, efficient methodologies for the representation, prediction and reduction of uncertain-
ties using this probabilistic framework is an important research issue. In what follows, we outline some
fundamental equations, present the computational method for ocean uncertainty predictions and list some
specifics on its implementation.

3.1. Fundamental equations

The deterministic component in Eqs. (1a) and (1b) are nonlinear PDEs defined on an infinite dimensional
space of functional fields. In the formal sense, one could continue in this setting, e.g. [58], and provide some
equations for uncertainty evolutions. For the purpose of computations in finite-dimensional spaces, we
assume for ease of notation that spatial dimensions have been discretized in some fashion. The ocean state
fields /i, their parameter fields P‘ and all boundary conditions are thus discretized and concatenated into
an interdisciplinary and coupled state vector x, of large but finite dimension. In Eq. (1c), observations are
taken at discrete instants, e.g. tk P t0. Their concatenation into a vector defines the data vector yo

k (the nota-
tion of [36] is employed).

Using the classic formalism of continuous-discrete estimation [37], the spatially discretized version in Eqs.
(1a) and (1b) are combined into a single equation for the augmented state vector x. Dynamics and observa-
tions are then described by
dx ¼Mðx; tÞ þ dg ð2aÞ
yo

k ¼Hðxk; tkÞ þ �k ð2bÞ
where M and H are the model and measurement model operator, respectively. The stochastic forcings dg and
�k are Wiener/Brownian-motion processes, g �Nð0;QðtÞÞ, and white Gaussian sequences, �k �Nð0;RkÞ,
respectively. In other words, EfdgðtÞdgTðtÞg¼: QðtÞ dt (Section 3.1.1). As a reminder, a form of multiplicative
noise is included in Eq. (2a) since the governing equations for model parameters (Eq. (1b)) contain stochastic
forcing. The initial conditions are also uncertain and x(t0) is random with a prior PDF, p(x(t0)), i.e.,
xðt0Þ ¼ bx0 þ nð0Þ with n(0) random. Of course, vectors and operators in Eqs. (2a) and (2b) are multivariate
which impacts the PDFs: e.g., their moments are also multivariate.

The estimation problem at time t consists of combining all available information on x(t), the dynamics and
measurements (Eqs. (2a) and (2b)), their prior distributions and the initial conditions p(x(t0)). Defining the set
of all observations prior to time t by yt�, the conditional PDF of x(t), p(x, t|yt�), contains all of this informa-
tion and is the solution for the prediction to time t. For the filtering problem at tk, it is pðx; tkjyo

0 ; . . . ; yo
k Þ.

Under classic hypotheses of differentiability and continuity, e.g. [37,25], p(x, t|yt�) is governed between
observations by the Fokker–Planck equation or Kolmogorov’s forward equation (Eq. (3a)). At measurement
times tk, one can simply apply Bayes’ rule and use the assumed white property of �k to obtain the update
Eq. (3b)
opðx; tjyt�Þ
ot

¼ �
Xn

i¼1

oðpðx; tjyt�ÞMiðx; tÞÞ
oxi

þ 1

2

Xn

i;j¼1

o2ðpðx; tjyt�ÞQijÞ
oxioxj

ð3aÞ

pðx; tkjyo
0 ; . . . ; yo

k Þ ¼
pðyo

k jxÞ pðx; tkjyo
0 ; . . . ; yo

k�1ÞR
pðyo

k jvÞ pðv; tkjyo
0 ; . . . ; yo

k�1Þdv
ð3bÞ
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In Eq. (3a), the last term is equal to 1
2
tr o2p

oxox
Q

� �
. Note that p(x, t|yt�) is itself random since it depends on data

values prior to t. Equations for governing the moments, modes, etc., of the PDF can be obtained from Eqs.
(3a) and (3b). When data are assumed to be continuous in time, Eqs. (3a) and (3b) are replaced by the Kushner
equation if PDFs are retained or by the Zakai equation if a non-normalized form is employed [82,37,46]. Both
explicitly depend on data value increments.

Because of the oceanic challenges (Sections 1 and 2), estimating the full p(x,t|yt�) for realistic applications is
challenging. For efficient sub-optimal estimates, we focus on the conditional mean and error covariance matrix
P ¼ Efðx� bxÞðx� bxÞTg, of initial conditions P(0). Using the Itô rule (e.g. [37,25]) and Eq. (3a), the evolution
of P in between observations is governed by Eq. (4a), where ÆÆæ denotes expectations. The update of P at data
times tk is derived from Eq. (3b) and given by Eq. (4b), where ÆÆæ� are expectations over p(x, t|yt�).
dP

dt
¼ hðx� bxÞðMðxÞ �MðbxÞÞTi þ hðMðxÞ �MðbxÞÞðx� bxÞTi þQ ð4aÞ

PkðþÞ ¼
hxkxT

k pðyo
k jxkÞi�

hpðyo
k jxkÞi�

� bxkðþÞbxkðþÞT ð4bÞ
The evolution of P depends on all moments and on data values prior to t. It is only for linear systems that the
covariance evolution does not depend on data values (e.g. [37,44,10] for related studies). For minimum error
variance, the goal is to minimize the trace of the a posteriori error covariance Pk(+): i.e., find xk such that
Jk = tr[Pk(+)] is minimized using the data up to time tk/tN, [y0, . . .,yk/yN], for the filtering/smoothing problem.

There are four important factors in the covariance evolution, the: (i) initial condition P(0); (ii) effects of
the deterministic model dynamics on the covariance, first two terms in the RHS of Eq. (4a); (iii) model
uncertainties which increase variance, last term in Eq. (4a); and (iv) data impacts which reduce variance,
Eq. (4b). A few oceanic uncertainty problems can be addressed with Eqs. (4a) and (4b). The first is the pure
prediction problem, in real-time or in hindcast, which starts from realistic initial conditions P(0) [54,64]. The
second is the reanalysis or full assimilation problem, including possibly both filtering and smoothing, which
computes uncertainties after the data collection and can lead to close to stationary errors if the observation
system is well chosen/adapted. The third is the predictability problem which estimates the time by which the
limit of predictability has been reached: i.e., the tr(P) has grown to be as large as that of the variability
(entropy-based criteria are also used [42]). Initial errors are then set small and random, white or red in
space.

3.1.1. Stochastic forcing

The stochastic forcings in the model and parameter equations (1) and (2) were chosen additive, uncorre-
lated to state variables, but correlated in time and space, because the statistics of several natural processes
can be approximated this way [37,27,26]. Since parameters enter model equations (Eqs. (1a) and (1c)), this
formalism also includes a type of multiplicative noise. To arrive to Eqs. (1a) and (2a), the deterministic ocean
dynamics and parameter evolution are first modified and forced by noise processes correlated in time and
space. For the spatially discrete, augmented state vector x, this leads
dx ¼Mðx; tÞ þ BðtÞd~w ð5Þ

The tilde on d~w denotes the stochastic forcing correlated in time. The matrix B(t) in Eq. (5) leads to spatial
covariances B(t)B(t)T P 0. It aims to model the spatial correlations of sea processes neglected or not well rep-
resented in the imperfect deterministic dynamics. The time dependence allows non-stationary statistics (as for
most ocean processes), but does not allow this statistics to be a function of the values of x itself.

Mathematically, the time-correlated noise processes d~w in Eq. (5) is modeled by differential equations
excited by Gaussian noise white in time w,
d~w ¼ gð~w; tÞ þ ~BðtÞdw ð6Þ

By a second state vector augmentation, e.g. [27], Eqs. (5) and (6) are combined into a single equation for the
joint state vector,
dx ¼Mðx; tÞ þ BðtÞdw; ð7Þ
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where up to dw, symbols of Eq. (5) have been formally kept to ease notation. Defining dg „ B(t)dw in Eq. (7)
with Q(t) = B(t)B(t)T leads to Eq. (2a).

The efficient modeling of the time-space noise covariances in Eqs. (5) and (6), according to specific uncer-
tain sea-processes, is challenging. There are essentially three approaches. The ‘‘empirical’’ choice uses the mis-
fits between deterministic model forecast and observations, and organizes and maps these misfits back to the
state space [12], possibly using a dominant singular value decomposition. The ‘‘analytical’’ derives stochastic
equations for the most energetic deficient processes of the dynamical model (e.g., PE). The ‘‘numerical’’ uti-
lizes notions related to stochastic optimals [22] to estimate what we call model error optimals. Presently, our
choice is based on a simple, zeroth order version of the analytical approach, with model coefficients empiri-
cally estimated from observations. Details are outlined in Appendix A.2.

Importantly, what is modeled as a deterministic process or a stochastic process depends on the time and
space scales contained in the scale window of interest (Section 1), or in other words, on the applications
and questions posed [28]. In ocean modeling, errors due to missing processes and approximate parameteriza-
tions, boundary conditions and initial conditions are usually much larger than uncertainties due the numerical
solutions of the model equations. For the incorporation and propagation of numerical uncertainties in com-
putational fluid dynamics using polynomial chaos ideas, we refer to [41].

3.2. Computational method

Error subspace statistical estimation (ESSE, [48,55]) aims to characterize and predict the largest of the
uncertainties governed by Eqs. (3) and (4). It is based on evolving an error subspace, of variable size, that
spans and tracks the scales and processes where the dominant errors occur. Model and data are combined
in accord with these predicted dominant uncertainties. Mathematically, it is the DA criterion (Eq. (1d)) that
sets the definition of the subspace. The suboptimal truncation of errors in the full space is then optimal. For
minimum error variance estimation, the subspace is defined by the ordered eigen decomposition of a normal-
ized form of the multivariate P, denoted here by P

p
k for a rank p (Eq. (8)). The corresponding DA criterion is

Eq. (9).
Er. Subpace: fPp
k ¼ EkPkET

k with rankðEkÞ ¼ pjmin
Pk ;Ek

kPk � Pp
kkg ð8Þ

Min. Er. Var.: fbxkjminbxk

J k ¼ tr½Pp
kðþÞ� using ½yo

0 ; . . . ; yo
k=yo

N �g ð9Þ
Note that different norms in Eq. (8) lead to different subspaces. In ocean predictions, errors in the initial
conditions and models are usually large and, as long as the normalization employed is meaningful, its de-
tails have a limited influence on the DA results. The components and time-workflow of the ESSE system are
illustrated in Fig. 1. The sequential computations are currently based on Pp

k for the data update and on an
adaptive, stochastic ensemble scheme for a nonlinear prediction of Pp

k , aiming to approximate Eqs. (4a) and
(4b).

The multivariate error subspace (ES) is initialized based on a decomposition on multiple scales of uncer-
tainties [51,54], using historical data and dynamics. Uncertainties at t0 are assumed to be the dominant var-
iability that is approximate or omitted in the initial mean state bx0. For parts of this variability, some data are
often available. These ‘‘observed portions’’ of Pp

0 are directly specified from differences between bx0 and data,
or from a statistical model fit to these differences. The ‘‘non-observed’’ portions are then computed by dynam-
ical inference, using an ensemble of model integrations (Eq. (2a)). Dynamical cross-covariances adjust these
unknown portions to the specified observed ones. The result is an estimate of the initial decomposition E0,
P0 (Fig. 1: left oval). To create initial states, a random combination of these error modes is added to bx0. If
the result passes dynamical and data constraints, it is a possible state.

At time tk, bxkðþÞ is perturbed (Eq. (11)) using Ek(+) with adequate random coefficients p
j
kðþÞ based on

Pk(+) and dynamical constraints [48]. Random white noise n
j
k is also added to model the truncated tail of

the error spectrum. To evolve fields and uncertainties up to tk+1 (Fig. 1: central oval), a central forecast
(Eq. (10a)) and an ensemble of j = 1, . . .,q stochastic ocean model integrations are carried out (Eq. (12)), start-
ing from the perturbed states xj

kðþÞ. The forcings EfdgðtÞdgTðtÞg¼: QðtÞdt are defined in Appendix A.2. The



Fig. 1. Seven main components of the present error subspace statistical estimation system and its schematic workflow with time.

P.F.J. Lermusiaux / Journal of Computational Physics 217 (2006) 176–199 183
error subspace forecast (Eq. (13)) is computed from this ensemble. The matrix Mkþ1ð�Þ ¼ ½ bxj
kþ1ð�Þ�bxkþ1ð�Þ�, difference between q realizations and an estimate of the conditional mean, e.g. bxem

kþ1ð�Þ (Eq.
(10b)), is computed. It is then normalized and decomposed (Eq. (13)) into Pkþ1ð�Þ¼

: 1
q R2

kþ1ð�Þ and Ek+1(�)
of rank p 6 q by singular value decomposition (the operator SVDp(Æ) selects the rank-p SVD). The ensemble
size is increased and ultimately controlled by convergence criteria. The coefficient q used here (Eq. (14)) in the
applications (Section 4) measures the similarity between two subspaces of different sizes. A ‘‘previous’’ esti-
mate (E,P) of rank p and ‘‘new’’ estimate (eE; eP) of rank ~p P p are compared, using singular values to weight
singular vectors. In Eq. (14), a is a scalar (1 � � 6 a 6 1) chosen by the user, ri(Æ) selects the singular value
number i and k ¼ minð~p; pÞ. When q is close enough to one, the two subspaces are similar in the variance
explained sense. The resulting (eE; eP) is then chosen as ES forecast for tk+1: Pk+1(�),Ek+1(�). The dimensions
of the ensemble (q) and ES (p) hence vary with time, in accord with data and dynamics.
Central fcst: bxcf
kþ1ð�Þ jdbx ¼Mðbx; tÞdt with bxk ¼ bxkðþÞ ð10aÞ

Ens: mean: bxem
kþ1ð�Þ¼

:
Eq bxj

kþ1ð�Þ
� �

ð10bÞ
ES Init: Cond:: bxj

kðþÞ ¼ bxkðþÞ þ EkðþÞ p
j
kðþÞ þ nj

k; j ¼ 1; . . . ; q ð11Þ
Ens: Fcst: bxj

kþ1ð�Þ jdbxj ¼Mðbxj; tÞdt þ dg with bxj
k ¼ bxj

kðþÞ ð12Þ
ES Fcst: Mkþ1ð�Þ ¼ bxj

kþ1ð�Þ � bxkþ1ð�Þ
� �

Rkþ1ð�Þ;Ekþ1ð�Þ jSVDpðMkþ1ð�ÞÞ ¼ Ekþ1ð�ÞRkþ1ð�ÞVT
kþ1ð�Þ

� �
ð13Þ

Conv: Crit:: q ¼
Pk

i¼1 riðP
1
2ETeE eP1

2ÞP~p
i¼1rið ePÞ P a ð14Þ
Once the ES forecast is completed, the data and their error estimates (Fig. 1: second bottom oval) are em-
ployed. Data can be acquired by adaptive sampling (Fig. 1: first bottom oval), e.g. predict the observations
that will reduce errors uncertainty the most [52]. Once data are available, data-forecast misfits are used to cor-
rect the predicted state by multivariate minimum error variance estimation in the ES (Fig. 1: middle oval). The
results are Eqs. (15)–(18), where Hp „ HE- and the subscript k + 1 has been omitted. Importantly, Eqs. (15)–
(18) are only a linear approximation of Eq. (4b). Outputs are the filtering estimates: the a posteriori fields x(+)
and a posteriori error subspace covariance, i.e., E+,P(+). Filtering covariance estimates can also be obtained
from a direct update of the SVD of the ensemble spread (see [48]).
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State Upd:: bxðþÞ ¼ bxð�Þ þ Kp ðyo �Hðbxð�ÞÞÞ ð15Þ
ES Optimal Gain: Kp ¼ E�Pð�ÞHpTðHpPð�ÞHpT þ RÞ�1 ð16Þ
ES Cov: Upd:: LPðþÞLT ¼ Pð�Þ �Pð�ÞHpTðHpPð�ÞHpT þ RÞ�1

HpPð�Þ ð17Þ
Eþ ¼ E� L ð18Þ
A posteriori data-model misfits are calculated and used for adaptive learning of the dominant errors (Fig. 1:
right oval), e.g. [50]. This learning of errors from misfits (Eqs. (19)–(22)) can be necessary because covariance
estimates are truncated and themselves uncertain. Eqs. (19)–(22) correspond to the case where observations
are tracer data. The posterior misfits are gridded, here using Eqs. 19 and 20, where Etrc(�) and Ptrc(�) are
an eigendecomposition of a tracer misfit covariance and Htrc „ HEtrc(�). The result bnðþÞ are added by
SVD to the ES, increasing its rank by one to lead Ea

þ and Ra(+). Continuous-time equations can also be de-
rived for this error adaptation.
bnðþÞ ¼ Ktrcðyo �HðbxðþÞÞ ð19Þ
Ktrc ¼ Etrcð�Þ Ptrcð�Þ HT

trc ðHtrc Ptrcð�Þ HT
trc þ RÞ�1 ð20Þ

Ea
þR

aðþÞVaT
þ ¼ SVDpþ1ð½EþRðþÞ bnðþÞ�Þ ð21Þ

PaðþÞ ¼ 1

qþ 1
Ra2ðþÞ ð22Þ
Ultimately, the smoothing via ESSE [48] is carried out backward in time (Fig. 1: top oval) to correct, based
on future data, the past coupled fields and uncertainties (Eqs. (23)–(26)). Starting from the filtering estimate,
a statistical approximation to the forward integration of the dynamical model between two data times tk� 1

and tk is derived. The approximation is a backward statistical linearization (Eq. (24)) based on the a poste-
riori ES at tk� 1 and nonlinear ES forecast at tk. This backward rule is then used to minimize the smoothing
DA criterion, leading to the smoothing estimate (Eq. (23)) and its errors (Eqs. (25) and (26)). Carrying out
repeating the smoothing process recursively up to t0 leads to the smoothed initial fields x0/N and errors, e.g.,
E0/N,P0/N.
Filtering Est:: ESSE filtering during ½t0; tN �
Smooth: Est:: bxk=N ¼ bxkðþÞ þ L

p
kðbxkþ1=N � bxkþ1ð�ÞÞ with bxN=N ¼ bxNðþÞ ð23Þ

Smooth: Gain: L
p
k ¼ EkðþÞCkET

kþ1ð�Þ and Ck ¼ RkðþÞVT
k ðþÞVkþ1ð�ÞR�1

kþ1ð�Þ ð24Þ
Smooth: Err: Cov:: HkPk=N HT

k ¼ PkðþÞ þ Ckðhkþ1Pkþ1=NhT
kþ1 �Pkþ1ð�ÞÞCT

k ð25Þ
Ek=N ¼ EkðþÞHk; with hkþ1¼

:
ET

kþ1ð�Þ Ekþ1=N ð26Þ
3.3. Numerical schemes and implementation

The ESSE numerical schemes corresponding to Fig 1 are relatively complex. Challenges arise due to the:
varied ocean geometries; measurement models and diverse data types and locations; and, dynamical models,
with multiple state variables and their stochastic forcing. However, many computations are based on linear
algebra which allows the use of efficient community packages. Focusing on the implementation, the main
version of the system is based on Fortran codes which utilize packages such as Lapack for optimum per-
formance (on distributed and parallel computers). These codes are managed based on workflows. For exam-
ple, let us consider the workflow of the uncertainty prediction module. Such predictions currently involve an
initialization software to estimate Pp

0. A script is then executed which manages several codes for: (i) the per-
turbation of the initial mean state, (ii) the subsequent ensemble of stochastic PE model runs, including the
successive computations of the SVD of the ensemble spread until a convergence criterion is satisfied, and
(iii) the data assimilation. Of course, such script workflows contain different types of variables, including
limit values, constants and evolving parameters, which need to be selected by the user. In the future,
web-based systems will facilitate the use of such workflows [20]. Considering computational cost, ESSE
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is on average about 103–104 times less expensive than classic linear schemes (e.g., Kalman filter/smoother).
Without such reductions, real-time and realistic predictions of uncertainties are not feasible with today’s
computers.

Of course, there are several options and heuristics to the ESSE scheme. They include: the parameters setting
the amplitude of the initial error conditions; the definition of the ocean forecast from the ensemble; the adap-
tation of the statistics of nj

k based on observations; and, when too small ensemble sizes are used, the optional
reduction of error covariances at long distances, based on a Schur product with another covariance.

4. Interdisciplinary applications

The applications presented illustrate capabilities of the ESSE computational scheme for oceanic uncer-
tainty estimation and prediction. Data properties, specifics and scientific results of each application are not
discussed in detail. Complete versions of ESSE were utilized in each application but only parts of the whole
system are illustrated in each case, with limited methodological overlap. The first application focuses on the
estimation of uncertainties for coupled physical-biogeochemical fields. The second outlines the transfer of
oceanic physical uncertainties to acoustical fields and shows some physical-acoustical interactions. The last
discusses real-time physical stochastic ensemble predictions, with assimilation of a wide range of measurement
types.

4.1. Uncertainty estimations for physical–biogeochemical fields in Massachusetts Bay

Regardless of the computational method used for uncertainty quantification, a challenge for multivariate
multi-dimensional fields is the visualization of uncertainties [15]. In addition to the conditional PDF of the
full discrete state x (pðx; t jyt�Þ, Section 3.1), a PDF can be estimated for each element of x. With the ESSE
ensemble, an histogram can be formed at every position and time, for every variable. Fig. 2 illustrates the field
of local PDFs of the surface velocity in Massachusetts Bay (Mass Bay) as hindcasted for September 2, 1998,
based on 600 realizations. Mean velocity amplitudes and vectors are on Fig. 2a. Local PDF estimates at two
critical point locations (point with mean velocity close to 0) are plotted in Fig. 2b. One of the results is that
state variables are close to be Gaussian at some locations but not everywhere. Of course, there are various
ways to visualize uncertainties in oceanic predictions. In addition to be visualized, ensemble forecasts also
need to be evaluated and several evaluation methods are now utilized (see [38,39]). They include rank histo-
grams [2,32] or scalar Talagrand diagrams [75], multi-dimensional scaling schemes [74], minimum spanning
tree histograms [79,73] and bounding boxes [77]. Connections among visualization and evaluation schemes
should in fact be useful for future research.

The above physical hindcast was initialized for August 20, 1998. Biogeochemical fields and uncertainties
were also initialized for that period. To estimate the initial physical–biogeochemical covariance P

p
0, models

(Eq. (2a)) are needed because historical data sets with both physical and biogeochemical synoptic measure-
ments are limited. For Mass. Bay, the data available were profiles of temperature, salinity and chlorophyll-
a, as well as a few coarse resolution profiles of nitrate and ammonium. The first two empirical orthogonal
functions (EOFs) of these profiles are shown in Fig. 3. The first EOF is related to variations of T and S that
are in opposition of phase (hence limited density variations) and to primary production dynamics (NO3 and
Chl). The second EOF is linked to fuller biogeochemical dynamics and salinity variations. Vertical EOFs were
combined with dominant horizontal analytical eigenfunctions (not shown) to lead to three-dimensional eigen-
vectors for T, S, Chl, NO3 and NH4, and their eigenvalues. This ‘‘observed’’ decomposition was then used to
perturb bx0 and estimate the ‘‘non-observed’’ variability by integration of the prognostic equations of the
‘‘non-observed’’ state variables (Appendix A). Pp

0 is ultimately estimated from the resulting variability
samples.

ESSE was then started from this dynamically-adjusted Pp
0. The convergence criterion q P a (Eq. (13)) with

a = 0.97 was evaluated for every batch of 100 runs and was reached after 600 runs. The resulting uncertainty
prediction is shown first (Fig. 4) by vertical sections across Mass Bay (Cape Cod to Cape Ann) in the forecast
error standard deviation fields for NO3, Chl, NH4 and D. One can recognize effects of the dynamics (first two
terms in the RHS of Eq. (4a)). For Chl, the uncertainty is largest above Stellwagen Bank, near its sub-surface



Fig. 2. Local PDF’s of surface velocity, as estimated by ESSE for Massachusetts Bay on September 2, 1998, and illustrated by A. Love,
W. Shen and A. Pang (UCSC). (a, left) Mean horizontal velocity magnitude |uh| (color mapping, blue to red/purple) and directions
(arrows). (b, right) Horizontal velocity PDFs (histograms) estimated based on the 600 ESSE ensemble members, at two locations. The
PDF of |uh| (top) and these of its two components v and u (below) are shown. Color on the histograms represents the PDF value (y-axis),
from blue to red/purple. The x-axis is in cm/s (black numbers). For each histogram, a parametric fit to a target Gaussian PDF is shown
(black curve); the red vertical line is the zero value line. The y-axis is the PDF value (black tick-marks). The green number is the mean |uh|
and the red number its standand deviation. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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maxima. The D uncertainties are also large on the northern side near Cape Ann due to D sinking and to down-
welling. For NO3, it is largest just below the largest Chl uncertainties and along the coast at depth due to
upwelling. Similar comments can be made for NH4.

The same vertical cross-section is now taken in error covariance field estimates (Fig. 5). Clockwise, the
auto-covariance for Chl is shown first, then cross-covariances between Chl-NO3, Chl-S and Chl-v̂ (see Appen-
dix A.1 for definitions). The location of the maximum in the Chl auto-covariance is the Chl point with which
all shown covariances are computed. Should a Chl observation be made at this point, the four fields shown
indicate how its ESSE assimilation would impact the Chl, NO3, S and v̂ estimates. For each field, the location
of the extrema are in accord with expected dynamics. Correlations are stronger with Chl and NO3 than with S

and v̂. A single Chl observations at that location would have a smaller relative impact on these two physical
fields.
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Fig. 3. First step in the initialization of physical-biogeochemical uncertainties for Mass Bay on August 20, 1998. Shown are the two
dominant EOFs of non-dimensionalized synoptic historical profiles of temperature, salinity, nitrate, ammonium and chlorophyll-a, as a
function of depth (model level, y-axis) and amplitude (x-axis).
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4.2. Physical–acoustical uncertainties in the middle atlantic bight (MAB)

The main oceanographic feature in the MAB shelfbreak is a mesoscale front of temperature, salinity and
hence sound-speed, separating the shelf and slope water masses (Fig. 6a). The frontal system is variable on
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4. Cross-sections in biogeochemical error standard deviation fields, hindcast for September 2, 1998 and computed using 600 ESSE



Fig. 5. Cross-sections in ESSE biogeochemical-physical error covariance fields, hindcast for September 2, 1998 and computed using 600
ESSE ensemble members. Clockwise, panels show the Chl–Chl covariance (the location of the maximum is the point with which all shown
covariances are computed), Chl-NO3 covariance, Chl-S covariance and Chl-v̂ covariance. Each panel only gives the name and units of the
field with which the Chl covariance is computed.

Fig. 6. HOPS simulation of PRIMER dynamics, with assimilation of all available physica
360 km domain (note large meander); (b) zoom in PRIMER acoustic domain (89 km by
velocity vectors.
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multiple scales. Atmospheric forcing, Gulf Stream rings, river inflows and buoyancy flow troughs, as well as
tides and internal waves, affect its dynamics. The main in situ data utilized were collected during July 26
to August 4, 1996, over an intensive acoustic domain (Fig. 6b), as part of the ONR Shelfbreak PRIMER

(2006) 176–199
a b
l data. (a) 50 m Temp. on July 26, in 387 km by
85 km), for 50 m Temp on Jul 26, overlaid with



Fig. 7. Eigenmodes of the normalized physical–acoustical error covariance on July 26, along the main acoustic vertical section. The first
mode is on the right, the second on the left. The upper fields show the sound-speed component, the lower fields the broadband TL
component.
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Experiment [59]. Substantial dynamical model tuning was carried-out to achieve reasonable physical-acousti-
cal simulations. ESSE is started for July 8, based on synoptic National Marine Fisheries surveys and other
historical data. The central forecast (Eq. (10a)) on July 26 is illustrated in Fig. 6, by horizontal maps of
the 50 m T overlaid with uh. Note the large meander in Fig. 6a and (sub)-mesoscale variability in Fig. 6b which
is important in summer, as anticipated from idealized simulations [49]. Interestingly, there are similarities
between this sub-mesoscale eddy field and open-ocean mesoscale eddies.

Sound-propagation studies often focus on vertical sections. ESSE ocean physics uncertainties on July 26
are transferred to acoustical uncertainties along such a section across the shelfbreak (Fig. 7). Time is fixed
and an acoustic broadband transmission loss (TL) field is computed for each ocean realization. The 450 Hz
sound source is at 300 m depth, near the deepest point on the slope. The coupled physical–acoustical
covariance Pp for the section is computed and non-dimensionalized. Its first two dominant eigenvectors
are shown in Fig. 7. The first uncertainty mode (left panels) mostly corresponds to possible shifts in the
frontal shape, with their acoustic TL responses above the source and in the cold channel on the shelf.
The second mode contains an opposition to the first and a tilt of the surface thermocline, leading to
less/more loss in the cold channel and more/less loss in the surface and bottom ducts. Importantly, these
modes (first two columns in E(�)) are used for coupled physical-acoustical assimilation of hydrographic
and TL data (not shown).

4.3. Real-time stochastic ensemble predictions and DA in the Monterey Bay region

A large ONR-sponsored, multi-institution coastal exercise, the Autonomous Ocean Sampling Network-
II (AOSN-II, [1]), occurred in August 2003 in the Monterey Bay region off central California. The main
features in the region are schematized in Fig. 8. ESSE was utilized to carry out nonlinear ensemble fore-
casts of physical fields and uncertainties of 2-3 days duration, assimilate various data types (ships, AUVs,
gliders, aircraft, and satellites) and provide suggestions for adaptive sampling and guide dynamical investi-
gations.



Fig. 8. Regional features of Monterey Bay and California Current System (CCS). (a) SST during upwelling event. (b) Modeling domains
and cartoon of principal regional features with their main properties, as synthesized from the AOSN-II data-driven simulations (4 August
to 3 September, 2003) and literature.
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Error standard deviation values for the surface temperature are shown in Fig. 9. The onset of upwelling,
sustained upwelling and relaxation conditions were captured, together with mesoscale variabilities and
impacts of dynamics on uncertainties. In particular, the data-driven field and error evolutions (Fig. 9) indi-
cated that, during relaxation events, energy transfer occurred in the upper-layers, from atmospheric-driven
large-scales to mesoscales. The build-up of larger-scale uncertainties during the upwelling periods is also
visible in Fig. 9. Evaluations of real-time forecasts indicated relatively good agreement between data-model
misfits and forecast uncertainties.

The effects of the stochastic forcings (Appendix A.2) are illustrated in Fig. 10. A deterministic and stochas-
tic simulation are started from the same initial conditions and their differences after 1-day of integration are
illustrated. The difference maps at 30 m (top of Fig. 10) clearly show that sub-grid-scales and sub-mesoscale
variability can be statistically depicted by the stochastic terms. Transfer of un-resolved energies to resolved
deterministic dynamical uncertainties also occurs. The differences in the vertical (bottom of Fig. 10) show
effects of the vertically-varying amplitudes of the stochastic forcings, computed based on data misfits and geo-
strophic balance. T and S uncertainties are concentrated around the thermocline and halocline while u and v

uncertainties are more slowly decaying in the upper 200 m depth.
Uncertainties on secondary variables can also be computed with ESSE, in a relatively straightforward man-

ner. If the computation of the secondary variables is considered exact, it simply involves their evaluations for
each ESSE ensemble member. For example, the uncertainty on Lagrangian Coherent Structures (LCS) was
computed with Lekien [57] and is illustrated in Fig. 11, for the August 26–29 upwelling period in 2003.
The mean Direct Lyapounov Exponent (DLE, [31]) and the corresponding LCS estimates are shown in
Fig. 11a. The error standard deviation of the DLE is in Fig. 11b.



Fig. 9. Sample of real-time ESSE forecasts of surface temperature error standard deviations (�).
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5. Relationships to other approaches and promising directions

There are several DA techniques for oceanic and atmospheric applications, see [70,40, and references
therein]. A few of these DA systems provide comprehensive and realistic predictions of uncertainties. ESSE
is one of them and it has been applied with real ocean data first in the Strait of Sicily [50,53]. Related ensemble
data assimilation studies, e.g. [21,63], have also started to be used in real-time in other ocean regions. In atmo-
spheric applications, ensemble forecasting has been utilized for uncertainty predictions for some time [19] and
realistic ensemble DA for weather prediction is now being investigated.

In some sense, ESSE combines DA with: (i) PODs or Karhunen–Loeve (KL) expansions [72,35]; (ii) time-
varying basis functions, (iii) multi-scale initializations [51]; and (iv), stochastic ensemble predictions. It extends
classic orthogonal basis/subspace decompositions that are fixed in time (pre-assigned functions /k(x), e.g.
EOFs) to a dynamic data-driven low-dimensional representation of the error space. An ESSE decomposition
can be written as
xðr; t; hÞ ¼ bxðr; tÞ þXp

i¼1

ffiffiffiffiffiffiffiffiffi
kiðtÞ

p
/eðr; tÞ fiðhÞ ð27Þ
where x is the ocean state, a function of space r = (x, y, z), time and random coefficients h; bx is the mean
estimate; ki(t) the dominant eigenvalues and /e(x, t) the dominant eigenfunctions of the time-evolving error
covariance; and, fi(h) a vector of random functions. The order of the truncation p is also a function of
time. Eq. (27) is an extension of a first order generalized polynomial chaos (GPC) expansion [81]. The ori-
ginal polynomial chaos formulation was proposed by Wiener [78]; see also [23]. It employs Hermite poly-
nomials in terms of Gaussian random variables as the trial basis to represent stochastic processes. The



Fig. 10. Differences between a deterministic and stochastic PE simulation, after 1-day of integration. It illustrates effects of the stochastic
forcings, of: amplitudes set to � · ||geostrophy(z)||, 1/2 day decorrelation time and 1-to-2 grid point correlation in space. Shown are
differences in horizontal maps of w, T, S and uh and in cross-sections (from offshore to the coast in Monterey Bay) of T, S, u and v.

192 P.F.J. Lermusiaux / Journal of Computational Physics 217 (2006) 176–199



Fig. 11. ESSE uncertainty estimates for Direct Lyapounov Exponent fields (day�1) and the corresponding Lagrangian coherent structure
estimates, see also [57].
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GPC [81] employs more types of orthogonal polynomials and can deal with non-Gaussian random inputs
more efficiently. For example, an orthogonal Karhunen–Loeve basis is used in [24] to define a PC expan-
sion and propagate uncertainty in structural mechanics systems using a stochastic finite element approach.
The coefficients of the expansion are evaluated as generalized Fourier coefficients via a Galerkin procedure.
ESSE does not yet provide approximate governing equations for the bases /e(x,t) (Eq. (27)). It is carried
out by an ensemble integration in time and importantly with data assimilation updates. Deriving such
equations is an area of future research.

Other schemes that could become useful in realistic ocean DA are based on sequential Monte-Carlo particle
methods [18], many of which differ as a function of the resampling strategy, e.g., genetic resampling or min-
imum variance branching, see [13,17]. Other methodologies are based on moment approximations or finite-
dimensional projections of densities onto manifolds (e.g. [5,6]).

An essential task in ocean science is the evaluation of models and their improvements. A framework for
assessing uncertainties in predictions that arise from uncertainties in underlying models is presented in [33],
focusing mostly on model parameters. The approach can be extended to the estimation of parameterizations
and model structures [16,56]. Several of these schemes are based on Markov Chain Monte Carlo (MCMC)
techniques and/or expectation-minimization algorithms. Their implementations in realistic ocean models will
likely require reductions analogous to those employed in ESSE.
6. Conclusions

A mathematical and computational approach for comprehensive, data-driven quantification, estimation
and prediction of uncertainties for interdisciplinary ocean dynamics was developed and exemplified. The com-
putational methodology and numerical system, error subspace statistical estimation, is based on a reduction of
the uncertainties to their largest components and on an approximation to nonlinear minimum error variance
estimation. Oceanic concepts were reviewed and classic equations governing the evolution of uncertainties in
the Bayesian sense summarized. Novel stochastic forcing formulations for complex ocean models were intro-
duced and a stochastic-deterministic primitive-equation-based ocean model was presented and utilized. ESSE
capabilities were illustrated in three interdisciplinary data-assimilative applications. The estimation of uncer-
tainties for physical-biogeochemical fields was carried out in Massachusetts Bay. The transfer of physical to
acoustical uncertainties was exemplified in the Middle Atlantic Bight, across the shelfbreak frontal system.
Real-time stochastic ensemble predictions and assimilation of a wide range of data types were illustrated
for the Monterey Bay region.
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The representation, attribution and propagation of errors for four-dimensional interdisciplinary ocean esti-
mates will require increased theoretical and applied research efforts in the coming years. The complexity of
oceanic processes, from turbulent flows to climate dynamics, presents many interesting and challenging issues
in uncertainty modeling. A new era of fully interdisciplinary ocean system science, quantitatively combining
models and data, is emerging. It will require accurate uncertainty estimates for both measurements and
dynamical models. Such estimates are also needed for novel but essential quantitative data assimilation feed-
backs: adaptive sampling, adaptive model identification and adaptive model reductions and simplifications.

Validating uncertainty predictions requires a systematic comparison with observations and involves statis-
tical studies of data-model misfits. New comprehensive ocean data sets are needed to do so. Currently, classic
tools such as the root-mean-square of data-model differences and data-model pattern correlation coefficients
are commonly utilized [49]. More advanced statistical schemes [38] are also needed. A variety of uncertainty
metrics need to be explored and defined for specific purposes. Automated schemes for field and uncertainty
evaluations should be developed by ocean and computational scientists. The derivation and utilization of
emerging stochastic ocean models is another important topic. Their statistics should be fit and validated based
on processes un-resolved by the deterministic models.

Relationships with other modern uncertainty quantification schemes were discussed. A promising research
direction involves combinations of ESSE ideas with generalized polynomial chaos approaches, aiming for new
efficient methods for adaptive multiscale error predictions. Another research area directly arises from the
ESSE scheme which learns errors from data misfits. By extension, uncertainties could thus be represented
as the sum of the: (i) field, (ii) its uncertainty, and (iii) the uncertainty on its uncertainty. Fuzzy information
theories and imprecise probability theories [76] can then be used.
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Appendix A. Stochastic-deterministic interdisciplinary ocean models

A.1. Deterministic coupled models

Ocean physics model. The physical variables are temperature T, salinity S, velocity vector u = (uh, w) and pres-
sure pw. For this study, their mesoscale evolution is computed by the PE model (Eqs. (A.1–7), see also Section 2)
of the Harvard Ocean Prediction System, e.g. [30]. In Eqs. (A.1–7), (x,y,z,t = r,z,t) is the position vector and
time, q0 the density of a state of reference, g gravity, f the vertical Coriolis frequency, Av and Kv vertical eddy
viscosities and diffusivities, and Ah and Kh their horizontal counterpart (modeled by a scale-dependent filter).
Atmospheric fluxes from external atmospheric models are imposed at the surface (sometimes with a flux correc-
tion). Model parameters and boundary conditions are calibrated based on ocean data and sensitivity studies. The
possible outputs consist of all state variables below and of a wide range of diagnostic variables and parameters.
Horiz: Mom::
Duh

Dt
þ f e3 ^ uh ¼ �

1

q0

rhpw þrh � ðAhrhuhÞ þ
oAvouh=oz

oz
ðA:1–2Þ

Vert: Mom:: qg þ opw

oz
¼ 0 ðA:3Þ

Thermal energy:
DT
Dt
¼ rh � ðKhrhT Þ þ oKvoT =oz

oz
ðA:4Þ
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Cons: of salt:
DS
Dt
¼ rh � ðKhrhSÞ þ oKvoS=oz

oz
ðA:5Þ

Cons: of mass: r � u ¼ 0 ðA:6Þ
Eqn: of state: qðr; z; tÞ ¼ qðT ; S; pwÞ ðA:7Þ
Sound speed eqn:: cðr; z; tÞ ¼ CðT ; S; pwÞ ðA:8Þ
Acoustic model. For each acoustic frequency f, the acoustic coupled normal mode model [7–9] solves a
linearized wave equation (Eq. (A.9)) governing sound pressure ps whose water-column parameter is the
4d sound-speed field c (Eq. (A.8)). After Fourier transform over time t, the acoustic pressure Ps(r, z; f)
(Eqs. (A.10) and (A.11)) is decomposed in the frequency domain into slowly-varying complex envelopes
that modulate (mode by mode) analytic, rapidly-varying, adiabatic-mode solutions. Given sound speed,
density, attenuation rate and bathymetry vertical cross-sections, the acoustic state is obtained by inte-
grating differential equations governing the complex modal envelopes (Eqs. (A.12) and (A.13)). Model
output contains sound pressure, transmission loss, and travel time, phase and amplitude of the individual
modes
Wave eqn:: q c2ðr; z; tÞ r � 1

q
rpsðr; z; tÞ

	 

¼ o2psðr; z; tÞ

ot2
ðA:9Þ

Pres:: transfer fct.: r2P s �
1

q
rq � rP s þ k2P s ¼ �2

r0

r
dðr � r0Þðz� z0Þ ðA:10Þ

where k¼: 2pf =cðr; z; tÞ

Modal decomp:: with P sðr; z; f Þ¼:
X

n

r0ffiffi
r
p P nðr; f ÞZnðz; r; f Þ ðA:11Þ

Coupled Normal-modes:
o

2

oz2
� 1

qðr; zÞ
oqðr; zÞ

oz
o

oz
þ ðkðr; zÞ2 � knðr; f Þ2Þ

� �
� Znðz; r; f Þ ¼ 0 ðA:12Þ

Coupled Modal amplit::
d2

dr2
þ k2

n

	 

P n ¼ �

X
m

cmn
d

dr
þ Cmn

	 

P m ðA:13Þ
Biogeochemical model. The model used here is based on generic advection-diffusion-reaction (ADR) equations.
Its state variables /i(x, y, z, t) (also called compartments or components by some biological modelers) are gov-
erned by
o/i

ot
þ u � r/i �rhðAirh/iÞ �

o Ki o/i=oz
oz

¼ Bið/1; . . . ;/i; . . . ;/7Þ ðA:14–20Þ
and coupled to the velocity u by advection. In Eqs. (A.14–20), the first term is the local time change at a point,
the second is advection, and the third and fourth are diffusions. The Ki’s are eddy diffusivities and the Bi’s on
the right are the biological dynamics or reactions which represents all sources and sinks of /i due to, e.g.,
reproduction, life-stage transitions, natural mortality, predation, chemical reactions and behavior. Universal
formulations for all processes inherent in the Bi’s do not yet exist and require substantial research, but most
Bi’s are known to be strongly nonlinear. The /i’s chosen here for the Massachusetts Bay uncertainty predic-
tion are: phytoplankton P ðPNO3

and PNH4
Þ, zooplankton Z, detritus D, nitrate NO3, ammonium NH4 and

chlorophyll-a Chl (see [4] for more details). Note that in Section 2, the generic notation corresponding to
Eqs. (A.14–20) is used for all state variables.

A.2. Stochastic models

With model errors, a stochastic extension of Eqs. (A.1–20) is solved. Presently, physical model errors are
employed: they aim to represent uncertainties due processes (e.g., sub-mesoscales, internal tides) not resolved
in the deterministic PEs (Eqs. A.1–7). Using Eqs. (5) and (6) of Section 3.1.1, spatially discrete stochastic forc-
ings are added, only in the equations which are prognostic.
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(a) Time-correlations. Considering Eq. (6), uncertainties are assumed to be stationary first-order Gauss–
Markov processes in time, for all state variables. This is a zero-mean random process exponentially decorre-
lated in time. It is generated by passing white noise through a simple feedback equation. For a scalar ~wðtÞ, its
sample path and variance equations are,
d~wþ b ~wdt ¼ dw ðA:21Þ
_p~w ¼ �2b p~w þ q ðA:22Þ
where 1
b is the autocorrelation time and w � (0,q) a white Gaussian noise in time. Setting _p~w to zero at all times

yields p~wð0Þ ¼ r2 ¼ q
2b. To obtain a process ~w of fixed fluctuation amplitude r and autocorrelation time 1

b, the
variance of w is set to be a constant q = 2br2.

(b) 3d Spatial covariances. In space, the stochastic forcing is set to be of vertically-varying amplitude. It
is obtained from a white noise on a two-grid point sub-sampled grid in all 3d directions. The white
noise on the coarser grid is mapped onto the actual finer grid by linear extrapolation, leading to an
approximate two-grid point correlated, 3d piecewise linear white noise. For each prognostic equation,
the noise variance at a given level is chosen equal to a small � fraction of the amplitude of the terms
involved in the dominant PE balance at that level, as determined from historical/future data variability,
equations scaling at t0 and dynamical model runs. In continuous-time, 3d discrete-space, this is summa-
rized by
dx ¼Mðx; tÞdt þ BfcðtÞd~wc ðA:23Þ
d~wc ¼ �bc ~wc dt þ dwc; ðA:24Þ
where x 2 Rn is the discrete-space PE state vector; wc
k the multivariate coarse 3d white noise; ~wc

k the corre-
sponding coarse 3d Gauss–Markov process; Mð�; tÞ the PE dynamical model operator and Bfc(t) the linear
extrapolation operator, from coarse to fine state.

(c) Stochastic primitive equation model. The state variables of the discrete PE model [30,11] are
x ¼ ðû; v̂;T;S; pÞT. The vectors: û and v̂ are internal baroclinic horizontal zonal and meridional velocities, T

temperatures, S salinities and p (discretized w) barotropic stream functions. The vector components of wc

are thus ðwc
û;w

c
v̂;w

c
T ;w

c
S ;w

c
wÞ

T. Analogous definitions hold for ~wc and its diagonal matrices of time-decorrela-
tions bc and noise variances R~wc .

The diagonal sub-matrices of time-decorrelations, (bu, bv, bT, bS, bw), in general functions of position
(x, y, z), were here chosen bX = bI. The decorrelation time was assumed homogeneous in space and across
state-variables. The diagonal sub-matrices of noise variances Ru, Rv, RT, RS and Rw are functions of z only.
Their amplitudes were set to ‘‘�* geostrophy’’, which implies:
Ru ¼ Rv ¼ r2ðzÞ I with rU ðzÞ ¼ �U fcUðzÞ ðA:25aÞ

RT ¼ r2
T ðzÞ I with rT ðzÞ ¼ �T UðzÞDT ðzÞ

LðzÞ ðA:25bÞ

RS ¼ r2
SðzÞ I with rSðzÞ ¼ �SUðzÞ DSðzÞ

LðzÞ ðA:25cÞ

Rw ¼ r2
wðzÞ I with rwðzÞ ¼ �w

x LðzÞ
UðzÞ ðA:25dÞ
where fc is the central Coriolis frequency. The values of the vertically-varying characteristic scales, U(z), DT(z),
DS(z), L(z) and x, and corresponding �’s are estimated from a combination of observations and dynamical
model runs.

Introducing all of these terms into the PE equations leads the stochastic PE model used in the present appli-
cations, where C represents the horizontal eddy vicosity/diffusivity operator:
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Internal Baroclinic Zonal Mode: dû ¼ du0 � du0 ðA:26aÞ

du0 ¼ �CðuÞ þ fv� g

q0

Z 0

z

qx dzþ Fu þ Avuzz

	 

dt þ Bfc

u d~wc
u

with u ¼ û� 1

H
wy:

d~wc
u ¼ �bu ~wc

u dt þ dwc
u

with ~wc
uð0Þ � ð0;RuÞ and wc

u � ð0; 2buRuÞ ðA:26bÞ

Internal Baroclinic Merid: Mode: dv̂ ¼ dv0 � dv0 ðA:26cÞ

dv0t ¼ ð�CðvÞ � fu� g

q0

Z 0

z

qy dzþ Fv þ AvvzzÞdt þ Bfc
v d~wc

v

with v ¼ v̂þ 1

H
wx:

d~wc
v ¼ �bv ~wc

v dt þ dwc
v

with ~wc
vð0Þ � ð0;RvÞ and wc

v � ð0; 2bvRvÞ: ðA:26dÞ

Thermal Energy Balance: dT ¼ ð�C ðTÞ þ FT þ KvTzzÞdt þ Bfc
T d~wc

T ðA:26eÞ
d~wc

T ¼ �bT ~wc
T dt þ dwc

T

with ~wc
T ð0Þ � ð0;RT Þ and wc

T � ð0; 2bT RT Þ: ðA:26fÞ

Conservation of Salt: dS ¼ ð�C ðSÞ þ FS þ KvSzzÞdt þ B
fc
S d~wc

S ðA:26gÞ
d~wc

S ¼ �bS ~wc
S dt þ dwc

S

with ~wc
Sð0Þ � ð0;RSÞ and wc

w � ð0; 2bwRSÞ: ðA:26hÞ

Barotropic Stream Function: rh ^ ½H�1rh ^ dw e3� ¼ �rh ^ du þ B
fc
w d~wc

w ðA:26iÞ
d~wc

w ¼ �bw ~wc
w dt þ dwc

w

with ~wc
wð0Þ � ð0;RwÞ and wc

w � ð0; 2bwRwÞ: ðA:26jÞ
For their numerical solutions, we refer to the reference list and to [47].
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